
Graph Traversals

[Review 03.03]

By Marina Barsky

Exploration strategies: hiking trails

Exploration strategies: food

Exploration strategies

Some people fully explore areas around them before moving on,

and others continue moving further and further from their home,

and return to explore the surrounding areas later.

These strategies roughly correspond to breadth-first and

depth-first respectively.

Graph Traversal

A graph traversal algorithm explores every vertex (and edge) of a

graph.

It is one of the most important algorithms used as an archetype for

solving many interesting problems:

○ Courses and prerequisites (topological sort)

○ Sub-networks (connected components)

○ “Weak link” (articulation points)

○ “Degree of separation” (shortest paths)

○ …

Example: Mazes

A maze can be viewed as a grid graph.

The vertices are pairs of (x,y) coordinates, and two neighboring

cells are connected by an edge if there is no wall between them.

Perfect mazes
A paper-and-pencil maze that has no loops and no inaccessible areas is

called a "perfect maze".

Imperfect MazePerfect Maze

A paper-and-pencil maze that has no loops and no inaccessible

areas is called a "perfect maze".

Perfect maze Imperfect maze

Solving perfect mazes

Perfect mazes can be solved using the right-hand rule.

(The left-hand rule also works and explores the maze in the opposite order.)

If you don't take the exit after you found it, then you will traverse the entire

maze graph before returning to the entrance.

"Always keep your

right hand on the

wall." — Right-

Hand Rule

https://en.wikipedia.org/wiki/Maze_solving_algorithm

Solving perfect mazes

Perfect mazes are easier to traverse than arbitrary graphs since the underlying

graph is acyclic.

The right-hand rule will not work for imperfect graphs or for arbitrary graphs.

"Always keep your

right hand on the

wall." — Right-

Hand Rule

https://en.wikipedia.org/wiki/Maze_solving_algorithm

Perspective: where to go next?

When solving paper mazes humans "see" the entire maze all at once and can

use their intuition.

Computer programs work one step at a time and only "see" one thing.

In graph traversal algorithms we need to use a first-person perspective.

Types of Graph Traversal

Recall traversal algorithms for binary trees:

● DF:

○ In-order

○ Pre-order

○ Post-order

● BF

Traversing general graphs is similar:

● Breadth-First Search

● Depth-First Search

When traversing general graphs (as opposed to trees) we need to be more

careful.

We may return to the same node and loop around it endlessly.

We may end up looping around this cycle.

We try to avoid doing this!

Super 3D Noah's Ark

Endless Looping

Labeling Vertices

To avoid the looping problem we will keep track of some data.

Each vertex will be marked as being in one of three different states.

1. A vertex is undiscovered if the algorithm has not seen the vertex yet.

2. A vertex is discovered if the algorithm has seen the vertex but we have not

followed all of its incident edges.

3. A vertex is processed if the algorithm has seen the vertex and followed all of its

incident edges.

The vertex has been seen, and

we have fully explored its edges

and adjacent vertices.

It has been processed.

Black vertex in the textbook

The vertex has not been seen

by the algorithm yet.

White vertex in the textbook

The vertex has been seen, but we

haven’t fully explored its edges and

adjacent vertices yet.

It has not been processed.

Grey vertex in the textbook

We would also need: Queues and Stacks

Queue Stack

To-Do List

In a special To-Do list we will keep track of vertices that have been discovered but

not yet processed.

Whenever we encounter an undiscovered vertex we add it to a to-do list.

Our algorithms repeatedly examine vertices in the to-do list until there are none.

● Initially the to-do list contains the single vertex where we start.

● For consistency of the discussion, when processing we examine a vertex's neighbors clockwise

from 12 o'clock.

We have previously discovered y, so it is already in the to do list
(or it has already been fully processed).

We have not previously discovered z so it is added to the to-do list.

While processing vertex x we discover vertex z,

and we rediscover vertex y.

x

z

y

x

z

y

Generic Algorithm for Graph Traversal

The following algorithm will correctly and efficiently explore all the vertices.

for each u in vertices of G:

u.state:= “undiscovered”

start.state:= “discovered”

todo:= new to_do_list()

todo.add(start)

while todo is not empty:

current_vertex:= todo.remove()

for each u in neighbors(current_vertex):

if u.state = “undiscovered”:

u.state:= “discovered”

todo.add(u)

current_vertex.state:= “processed”

Algorithm traverse (graph G, vertex start)

1

2

3

4

5

6

7

8

9

10

11

12

Breadth-First Search

In breadth-first search (BFS) the to-do list is a (FIFO) queue.

for each u in vertices of G:

u.state:= “undiscovered”

start.state:= “discovered”

todo:= new Queue()

todo.enqueue(start)

while todo is not empty:

current_vertex:= todo.dequeue()

for each u in neighbors(current_vertex):

if u.state = “undiscovered”:

u.state:= “discovered”

todo.enqueue(u)

current_vertex.state:= “processed”

Algorithm BFS (graph G, vertex start)

1

2

3

4

5

6

7

8

9

10

11

12

Example: BFS
color state

undiscovered

discovered

processed

g h

po

l

m

a

fe

j

n

k

c

i

q

db

current_vertex todo g

Breadth-first search starting from vertex g.

Example: BFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Breadth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex g todo

Example: BFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Breadth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex g todo e h i j

Example: BFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Breadth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex todo e h i j

Example: BFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Breadth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex e todo h i j

Example: BFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Breadth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex e todo h i j a

Example: BFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Breadth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex todo h l j a

Example: BFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Breadth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex h todo l j a

Example: BFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Breadth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex h todo l j a c i p f

Example: BFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Breadth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex todo l j a c i p f

Example: BFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Breadth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex l todo j a c i p f

Example: BFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Breadth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex l todo j a c i p f m

Example: BFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Breadth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex todo j a c i p f m

Example: BFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Breadth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex j todo a c i p f m

Example: BFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Breadth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex j todo a c i p f m o ...

Example: BFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Breadth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex todo a c i p f m o ...

Example: BFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Breadth-first search starting from vertex g.

We have processed

every vertex that has

distance one from g.

Discovered vertices in

the queue are

distance two from g.

color state

undiscovered

discovered

processed

current_vertex todo a c i p f m o ...

BFS

1. Breadth-first search will always visit closer nodes first. In other words,

a node at distance d edges from the start will be visited before any

node at distance d+1.

2. The order that the nodes are discovered is the same order that the

nodes are processed. Both of these orders can be obtained from the

todo list by crossing out the values instead of erasing them.

Note: On the exam you may be asked to specify the order that the nodes are

discovered / processed. For the previous example the answer would be:

g e h l j a c i p f m o n k b d q

Depth-First Search

In depth-first search (DFS) we process the to-do list as a stack.

Iterative pseudocode for DFS

for each u in vertices of G:

u.state:= “undiscovered”

start.state:= “discovered”

todo:= new stack()

todo.push(start)

while todo is not empty:

current_vertex:= todo.pop()

for each u in neighbors(current_vertex):

if u.state = “undiscovered”:

u.state:= “discovered”

todo.push(u)

current_vertex.state = “processed”

Algorithm DFS (graph G, start)

1

2

3

4

5

6

7

8

9

10

11

12

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

current_vertex todo g

Depth-first search starting from vertex g.

color state

undiscovered

discovered

processed

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex g todo

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex g todo e h l j

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex todo e h l j

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex todo e h l j

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex j todo e h l

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex j todo e h l aj o n k

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex todo e h l a o n k

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex todo e h l a o n k

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex k todo e h l a o n

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex todo e h l a o n

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex n todo e h l a o

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

color state

undiscovered

discovered

processed

current_vertex todo e h l a o

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

current_vertex o todo e h l a

color state

undiscovered

discovered

processed

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

current_vertex o todo e h l a m p

color state

undiscovered

discovered

processed

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

current_vertex todo e h l a m p

color state

undiscovered

discovered

processed

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

current_vertex p todo e h l a m

color state

undiscovered

discovered

processed

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

current_vertex p todo e h l a m i q

color state

undiscovered

discovered

processed

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

current_vertex todo e h l a m i q

color state

undiscovered

discovered

processed

Example: DFS

g h

po

l

m

a

fe

j

n

k

c

i

q

db

Depth-first search starting from vertex g.

Some vertices of

distance two from g

have been processed.

Some vertices of

distance one have

only been discovered.

color state

undiscovered

discovered

processed

current_vertex todo e h l a m i q

DFS Notes

Note: on the exam you could be asked for the order that the nodes are discovered /

processed. In the previous example the answer would be the following.

g e h l j a o n k m p i q d c b f

g j k n o p q i c b d m a l h f e

discovered

processed

Image of BFS is from wikipedia

Breadcrumb (DFS) algorithm for getting out of the woods

https://en.wikipedia.org/wiki/Maze-solving_algorithm

Solving mazes with graph traversals

● DFS (as well as BFS) can be used to solve mazes.

● Both algorithms traverse the entire graph - so eventually they will find a

path from start to exit, if such path exists.

Depth-First Search (pop only when there is nothing to add)

We can modify the DFS to mark the vertex as processed when all vertices
reachable from it have been discovered/processed.

Iterative pseudocode for DFS

for each u in vertices of G:

u.state:= “undiscovered”

start.state:= “discovered”

todo:= new stack()

todo.push(start)

while todo is not empty:

current_vertex:= todo.top() # don’t pop yet: just read

for each u in neighbors(current_vertex):

count: = 0

if u.state = “undiscovered”:

u.state:= “discovered”

todo.push(u)

count: = count + 1

if count = 0: # nowhere to go

current_vertex.state = “processed”

todo.pop()

Algorithm DFS (graph G, start)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Depth-First Search (Recursive)

This later variation of the Depth-first search can also be implemented recursively.

This implementation implicitly replaces the todo stack with the call stack.

Recursive pseudocode for DFS

Algorithm DFS(G, current)

current.state:= “discovered”

for each u in neighbors(current)

if u.state = “undiscovered” then

DFS(G, u)

current.state:=“processed”

for each u in vertices of G

u.state:= “undiscovered”

DFS(G, start) // start is a vertex in G

BFS and DFS: side-by-side

ALgorithm BFS(G, start)

for each u in vertices of G

u.state:= “un”

start.state:= “d”

todo:= new queue()

todo.enqueue(start)

while todo is not empty:

v:= todo.dequeue()

for each u in neighbors(v)

if u.state = “un”:

u.state:= “d”

todo.enqueue(u)

v.state:= “p”

ALgorithm DFS(G, start)

for each u in vertices of G

u.state:= “un”

start.state:= “d”

todo:= new stack()

todo.push(start)

while todo is not empty:

v:= todo.pop()

for each u in neighbors(v)

if u.state = “un”:

u.state:= “d”

todo.push(u)

v.state:= “p”

Runtime of BFS and DFS

Both algorithms are O(n+m)-time, where m is the number of edges. There are at

most O(n2) edges, so this is O(n2)-time.

Notice that the stack and queue operations must guarantee O(1)-time.

ALgorithm BFS(G, start)

for each u in vertices of G

u.state:= “un”

start.state:= “d”

todo:= new queue()

todo.enqueue(start)

while todo is not empty:

v:= todo.dequeue()

for each u in neighbors(v)

if u.state = “un”:

u.state:= “d”

todo.enqueue(u)

v.state:= “p”

ALgorithm DFS(G, start)

for each u in vertices of G

u.state:= “un”

start.state:= “d”

todo:= new stack()

todo.push(start)

while todo is not empty:

v:= todo.pop()

for each u in neighbors(v)

if u.state = “un”:

u.state:= “d”

todo.push(u)

v.state:= “p”

